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NOTE

A Technigue for Regularizing the Structure of a
Monotonic Lagrangian Grid

1. INTRODUCTION

In many applications of molecular dynamics, Lagrangian
fluid dynamics, and other types of object-tracking
problems, it is necessary to keep track ol particles, fluid
elements, or more generally, nodes which are separated by
less than a specified physical cutoil distance R.. One
approach is to calculate the distances between all pairs of
nodes and compare these separations to R, This process
ensures that all neighboring nedes are found, but because
the operation count scales as N, where N is the total num-
ber of nodes, it becomes impractical for large systems. Much
waork has been done to develop algorithms which are more
efficient in determining near neighbors, including the par-
ticle-particle-particle-mesh (PPPM} algorithm described by
Hockney and Eastwood (1] and trees [2]. A drawback of
the PPPM method is that it does not adapt to vecter or
parallel machines with full efficiency. Gunsteren er al. [3]
have developed algorithms based on neighbor list techni-
ques which vectorize well, but which are prohibitive for
large systems because of the large storage requirements.

Algorithms based on the monotonic Lagrangian grid
(MLG) [4-77 have been developed in which the operation
count scales as N log N. This method has the advantage that
it adapts well to vector and parallel machines and requires
minimal memory. The MLG has been shown to perform
well on vector machines for the test problems of identifying
near-neighbors, accessing near-neighbor dala, and ordering
of near-neighbors according to distance [8]. Each node is
assigned a set of grid indices which are related to the relative
spatial coordinates of the nodes. Nodes which are in MLG
order sitisfy the N3 —1/N_~ /N _—1/N ) monotonicity
conditions,
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where (N, N, N.) define a three-dimensional data struc-
ture, (#, j, k) are the grid indices, and N x N . xN.=Nis
the total number of nodes. The primary advantage of a well-
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structured MLG is that nodes which are nearby in physical
space are also nearby in index space. Neighboring nodes can
be found by searching index space with a maximum index
offset NV_, rather than searching physical space with a cutoff
distance R..

For most applications of the MLG, we are interested in
the time evolution of a system in which the nodes can move
significantly so that their neighbors change continually in
time. An MLG can be restructured by exchanging, or
“swapping,” data stored in adjacent nodes until the
monotonicity conditions of Egs. (1) are satisfied. This
method of grid restructuring is very efficient since local
violations of monotonicity can be corrected without
triggering global changes in the MLG. Because data
for nodes which are adjacent in index space are stored in
contiguous memory, codes based on the MLG vectorize
and.parallellize well. The MLG is particularly well suited for
massively parallcl machines such as the Thinking Machine
CM-200 since data for adjacent nodes is stored in adjacent
processors. The performance of MLG-based codes on
the CM-200 is not hampered by the fact that in most
applications a maximum index offset greater than one is
required. A tour algorithm using repeated near-neighbor
communications to follow a continuous path through the
nearby processors very efliciently allows index offsets
greater than unity. After communications are completed to
copy necessary information into the relevant neighboring
processors, all computations are then carried out within the
Processors.

Since the physical positions of the nodes define the grid,
the MLG is well suited to problems in which there can be
significant variation in the local density of the system.
Molecular dynamics (MD) simulations have been per- |
formed on shock-induced detonations in solids [97] and
(N,), [10] dimer formation on vector machines. More
recent work on massively parallel machines includes shock-
defect interaction in Lennard-Jones solids {i1] and
applications to related problems in battle management
[12]. The MLG can be used both for systens with fixed and
variable numbers of particles. The addition or deletion of
particles is handled by the use of holes, empty nodes in the
MLG structure.
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F1G. 1. Examples of three different monotonic Lagrangian grids based
on the same set of node locations. Solid and dashed lines represent x and
¥ links, respectively. Grid (a) was obtained by sorting nodes into MLG
order from a random order. Grids (b) and (c) are derived from grid (a) by
one and two iterations, respectively, of SGR.

An important property of the MLG is that the ordering
of the nodes within the data structure, subject only to the
conditions of Eqgs. (1), is not unique so the overall quality of
the MLGs can vary significantly for a single spatial distribu-
tion of nodes. This is best illustrated by an example for a
6 x 6 system of nodes as shown in Fig. 1. A serious draw-
back of an arbitrarily chosen MLG is the possibility of near
misses. This occurs when nodes which are separated by less
than the cutoff distance R, in physical space have MLG
indices which differ by more than the maximum index offset
N.. Previous work [7] studied the statistical properties of
the MLG, including an analysis of the probability of a near
miss as a function of the maximum index offset. This
probability can be made vanishingly small by increasing
the volume of index space to be searched. Unfortunately,
the computational costs associated with the short range
interactions increase proportionally with the volume of
index space which must be treated.

This note presents an easily applied, inexpensive method
of find a well-structured MLG, thereby reducing the maxi-
mum index offset required to give an acceptably small near-
miss probability. This method takes advantage of the fact
that the MLG ordering is not unique and that it is possible
to restructure locally from a poorly to a well-structured
MLG for a given set of spatially distributed nodes.

2. GRID RESTRUCTURING TECHNIQUE

The usual methed for restructuring the grid involves
swapping the node data until the monotonicity conditions
in Eqgs. (1) are satisfied. Even though the nodes may be in
MLG order, a much more satisfactory MLG often exists. In
the proposed method, several extra inexpensive restruc-
turing steps are added. A single iteration of the technique,
which is referred to as stochastic grid restructuring (SGR),
consists of the following steps:

(1) Nodes are randomly displaced in space, retaining
unperturbed positions.
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(2) Data is swapped until monotonicity conditions are
satisfied for the perturbed node positions.

(3) Starting from the MLG ordering established in the
preceding step for the perturbed node positions, data is
swapped until the monotonicity conditions are satisfied for
the unperturbed node positions.

The perturbed node positions are obtained by indepen-
dently choosing displacements along each coordinate axis
from a uniform random distribution. The magnitude of the
maximum node displacement along a single coordinate axis
is the critical parameter in the SGR technique. Multiple
iterations of the SGR on a single simulation timestep may
be appiied to further improve grid structure.

Well-structured MLGs appear to be statistically more
stable than poorly structured MLGs. The usual grid
restructuring method, however, has a tendency to allow
fewer optimal MLG orderings to occasionally evolve and
the system can become trapped in a relatively unfavorable,
but locally stable, MLG configuration. By perturbing the
system, much in the manner of simulated annealing, SGR
makes it possible for the system to access and therefore
settle into a more statistically likely, well-structured MLG.

3. RESULTS

Various statistical quantities can be used to give a good
measure of the overail quality of the MLG. One useful set of
parameters is the average link lengths between index
neighbors in the MLG. The x, y, and z link lengths are
defined as

xlink“& js k) = |]'(I+ la j! k)i r(i9 js k)|

ylink(i9 js k) = 11-('!;’ j+ ls k) 7r(l‘, ja k)‘
Zlink(is js k): |r(f, ja k + 1)* l'(f, j3 k)l

(2)

For many cases a well-structured MLG 1s one where the
average near-neighbor link length is a minimum. Another
useful set of parameters is the average of the normalized dot
products of vectors joining near neighbors with the unit
normals. The dot products are defined as

x(i+ 1, j k) —xi, j, k)

xdul(iz jv k) =
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The average dot products give a measure of the direc-
tionality of the links joining near neighbors in index space.
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For a set of nodes arranged on a simple cubic lattice, ie.,
r=a(li+mf+nk), all dot products and therefore the
average dot products equai one. For a random distribution
of nodes, the average dot products are a measure of the
MLG quality, with larger average dot products generally
cooresponding to MLGs with better structure.

Figure 1 shows the restructuring of an MLG using SGR.
The values of the average link lengths for grids (a), (b},
and (c) are 1.189, 1.056, and 1.029, respectively. The corre-
sponding average dot products are 0.818, 0.923, and 0.980,
respectively, To show the advantages of SGR on a simple
system of a size typical in a molecular dynamics simulation,
we present the results for a 20 x 20 x 20 system of nonin-
teracting nodes. The nodes are initialized at time 7/=0on a
simple cubic lattice and given random velocities. The nodes
are enclosed within a cubic region of space and reflecting
boundary conditions are imposed in all three directions. On
cach timestep of the simulation, the positions of the nodes
are updated and the MLG is restructured either by the usual
method of swapping nodes until MLG order is established
or by the method described in the previous section. The
effect of three different conditions on the quality of the
resulting MLG were investigated. The first is the magnitude
of maximal displacement of the nodes along each coor-
dinate axis. The second is the frequency with which the SGR
technique is used to carry out the restructuring. For exam-
ple, an SGR frequency of 20% means that the optimized
method 1s used on every fifth timestep and the usual method
is employed on all other timesteps. The third is the number
of iterations allowed on each simulation timestep.

We found that there is an optimal magnitude of node dis-
placement. Figure 2 shows the average values of 'the link
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FIG. 2. Average link length (solid line) and dot product (broken line}
as a function of maximum node displacement employed in SGR. Maximum
displacements given in units of initial internode separation. The values
shown are obtained by averaging both over all nearest-neighbor links of
the 20 x 20 x 20 MLG and over 250 simulation timesteps.
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lengths and dot products as a function of the displacement
magnitude. The average values are obtained by averaging
both over all nearest-neighbor links of the 20x20x20
MLG and over 250 simulation timesteps, neglecting early
timesteps in which the system is still in a highly ordered
state, The average dot products and link lengths computed
at each timestep along the x, y, and z axes are nearly identi-
cal and show little variation over the duration of the
calculation. According to these two criteria, the maximum
dispiacement of nodes along each coordinate axis which
gives the best MLG is approximately one-half of the initial
internode separation. For very large maximal displacements
the MLG quality can actually deteriorate. This 1s consistent
with the observation that if a set of nodes is put into random
order and sorted, the resulting MLG is often more poorly
structured than one that is updated from the previously
existing MLG order.

The effect of varying the frequency with which the SGR
technique is used is shown in Fig. 3. The best quality grids
are obtained when SGR is performed on each timestep. In
all cases, using the SGR periodically still results in a better
structured grid.

The quality of the MLG structure obtained can be
improved by increasing the number of iterations on each
timestep. The values of the average dot products increase
and the average link lengths decrease as the number of itera-
tions is increased, as shown in Fig. 4. There is an upper limit
to the quality of the MLG that can be obtained, which is
determined by the spatial positions of the nodes. Beyond 10
iterations of the SGR, the MLG diagnostics converge very
slowly toward their maximum values, The addition of one
iteration of the SGR per timestep increases the total number
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FIG. 3. Average link length (solid line) and dot product (broken line)
as a function of frequency of SGR. The values shown are obtained by
averaging both over all nearest-neighbor links of the 20 x 20 x 20 MLG
and over 250 simulation timesteps.
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FIG. 4. Average link length (solid line} and dot product (broken line)
as a function of number of iterations of SGR used on cach timestep. The
values shown are obtained by averaging both over all nearest-neighbor
links of the 20 x 20 x 20 MLG and over 250 simulation timesteps.

of swaps which must be performed to restore MLG order.
This increase is dependent on how badly the nodes are
allowed to get out of MLG order between timesteps. In
our simulations, using the optimal maximum node dis-
placements, the number of swaps increase by approximately
a factor of four. After the first iteration of SGR, the total
number of swaps increases linearly with the number of
iterations.

Although the average grid diagnostics are a good
measure of the overall structure of the MLG and are
relatively inexpensive to compute, an inherent weakness is
that they may underestimate the influence of small locally
distorted regions of the grid. The occurrence of rare events
involving nodes with both large index offsets and small
spatial separations was monitored in the simulations. The
use of SGR has a profound effect on the distance of closest
approach for nodes separated by four index offsets. Addi-
tional iterations of SGR on each timestep further increase
the closest approach of nodes with large index offsets by up
to 50%. In cases where the majority of the grid is already
well structured, small improvements in the average grid
diagnostics are indicative of large improvements in the
structure of the most highly distorted regions of the grid.

4. CONCLUSIONS

Using the method described in this paper, it is possible to
relax from a poorly structured to a well-structured MLG.
The method is easy to apply and the quality of the MLG
obtained does not depend significantly on the quality of the
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random number generator used to perturb the node
positions. The advantage of working with a well-structured
MLG is that the region of index space which must be
included in the search for neighboring nodes can be kept
smaller, resulting in decreased computational costs.

In many types of calculations, the grid restructuring takes
up only a very small fraction of the computational cost.
Although the overhead associated with grid restructuring
scales linearly with the number of iterations, in these cases
it may be worthwhile to perform several iterations on each
timestep. In most applications, such as molecuiar dynamics,
the starting point for a system is very ordered and a high
quality MLG can be easily found. For cases where the
starting point is a random ordering of nodes, it may be
advantageous to continue the grid restructuring process
until the MLG diagnostics converge to a predetermined
limit and then use a smaller number of iterations on further
restructurings.

The SGR Has been applied to a two-dimensional
molecular dynamics simulation of shock propagation in a
lattice involving thousands of interacting particles. The
MLG structure obtained in these simulations was often very
poor due to the fact that a disordered fluid-like region was
in contact with a periodic lattice with nonorthogonal lattice
vectors. The SGR not only improved the overall quality of
the MLG, but it significantly improved the grid structure in
the most highly distorted regions of the MLG. Most
impressive, however, was the result that the maximum index
offset required for the calculation of the short-range interac-
tions was reduced from N¥_.= 8 to N, =4. In this simulation
the extra cost associated with the SGR was more than
balanced by the factor of four reduction in costs associated
with calculating the short-range interactions. More
dramatic savings should be seen in three-dimensional
calculations.
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